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Impact of Overdispersion on Log-linear Models for
Contingency Tables

Dr. Jalal A. Moaiti,* Radi A. Othman,** Ali M. Moftah***

(Members of Teaching Staff, Department of Statistics, Faculty of Arts and Sciences, University of
Benghazi, Libya)

Abstract:

Most of the practical studies in social, medical and many other sciences have utilized
the use of chi square to study the relationship between many types of categorical data,
and it has been widely used. However, the use of chi square test of independence can
be affected by overdispersed counts of a contingency table. In this work, the effect of
the overdispersion on the log-linear models using Poisson distribution and negative
binomial distribution is investigated. These models were applied on (2x2), (3x3) and
(4x4) generated contingency tables of overdispersed and Poisson distributions. A
simulation study was applied on different conditions of counts average and degree of
dispersion. The Poisson distribution was severely affected by the overdispersion of
the data. As a solution to this problem, the negative binomial distribution was used
and it found that, it performed well to alleviate of this problem in some cases of the
simulation stages. However, using the Poisson model on overdispersed counts of a
contingency table, can inflate the Type one error of the deviance and the Pearson chi
square as well.

Keywords: Poisson regression model, Negative binomial regression model, Log-
linear Models, Overdispersion.
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1.Introduction:

Loglinear models (LLM) are using to study the relationships among two or more
discrete variables. Often referred to multiway frequency analysis and it is an
extension of the familiar chi-square test for independence in two-way contingency
tables. LLM may be used to analyze surveys and questionnaires which have complex
interrelationships among several questions. Although questionnaires are often
analyzed by considering only two questions at a time, this ignores the important of
three-way and multiway relationships among the questions. The use of LLM on this
type of data is analogous to the use of multiple Poisson regression rather than simple
correlations of data.

Brief History: Until the late 1960’s, contingency tables (two-way tables formed by
cross classifying categorical variables) were typically analyzed by calculating chi-
square values to test the hypothesis of independence. When tables consisted of more
than two variables, researchers would compute the chi-squares for two-way tables and
then again for multiple sub-tables formed from them, in order to determine if
associations and/or interactions were taking place among the variables. In the 1970’s
the analysis of cross-classified data changed quite dramatically with the publication of
a series of papers on loglinear models by L.A. Goodman. Many other books appeared
around that time building on Goodman’s work (Bishop, Finberg & Holland 1975;
Haberman 1974). Now researchers were introduced to a wide variety of models that
could be fitted to cross-classified data. Thus, the introduction of the loglinear model
provided them with a formal and rigorous method for selecting a model or models for

describing associations between variables.

Overview: The loglinear model is one of the specialized classes of generalized linear
models when the distribution of data is a Poisson-distribution. Loglinear models class
is an extension of the two-way contingency table where the conditional relationship
between two or more discrete categorical variables is analyzed by taking the natural
logarithm of the cell frequencies of a contingency table. Although loglinear models
can be used to analyze the relationship between two categorical variables (two-way
contingency tables), they are more commonly used to evaluate multiway contingency
tables that involve three or more variables. The variables analyzed by log linear
models are a response variable which represents the counts, and other explanatory
variables. Therefore, loglinear models are demonstrate the individual and interaction
effects of the explanatory variables on a response variable.

Basic Strategy and Key Concepts: The basic strategy in loglinear modeling involves
fitting models to the observed frequencies in the cross-tabulation of categorical
variables. The models can then be represented by a set of expected frequencies that
may or may not resemble the observed frequencies. Models will vary in terms of the
marginal they fit, and can be described in terms of the constraints they place on the
associations or interactions that are present in the data. The pattern of association
among variables can be described by a set of odds and by one or more odds ratios
derived from them. Once expected frequencies are obtained, we then compare models
that are hierarchical to one another and choose a preferred model, which is the most
parsimonious model that fits the data. It’s important to note that a model is not chosen
if it bears no resemblance to the observed data. The choice of a preferred model is
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typically based on a formal comparison of goodness-of-fit statistics associated with
models that are related hierarchically (models containing higher order terms also
implicitly include all lower order terms). Ultimately, the preferred model should
distinguish between the pattern of the variables in the data and sampling variability,
thus providing a defensible interpretation. Modeling count variables is a common task
in economics and the social sciences. The classical Poisson regression model for
count data is often of limited use since empirical count data sets usually exhibit
overdispersion with the counts. Another more formal way can be used as a solution to
this problem, is using Negative Binomial model instead. In this study, the impact of
overdispersion on the Poisson model along with the Negative Binomial model will be
investigated. SAS Monte Carlo simulation procedure will be used to generate counts
of light-tailed (Uniform) and Poisson distributions, and then these models will be
fitted to some conditions of contingency tables. The focus will be on the type-I error
rate of the deviance and ordinary Pearson chi square goodness of fit of these models.

2. The Problem:

When applying generalized linear models with a known scale as is certainly the case
for the binomial and Poisson distributions where (@ =1), subject to certain asymptotic
conditions for a well fitting model we would expect:
Residual Deviance =~ Residual degrees of freedom (df).
What if the Residual Deviance > Residual df ?
There are two possible scenarios we need to consider:
(i) We may simple have a badly fitting model for one of a number of reasons such as:
» Omitted terms or variables in the linear predictor;
« Incorrect relationship between mean and explanatory variables, i.e.
We may have the wrong link function or need to transform one or more explanatory
variables;
* Outliers.
Standard model diagnostics allow us to explore these aspects, see Mc-Cullagh and
Nelder (1989), Chapter 12.
(i) The variation may simply be greater than that predicted by model and it is this
phenomenon that is described as overdispersion then we have:
+ Count data with Var(y;) > u;.
* Proportion data with Var(y;) > u; m;(1 — m;).
Causes of Overdispersion: There are many different possible causes of
overdispersion and in any modeling situation a number of these could be involved.
Some possibilities are:
* Variability of experimental material: this can be thought of as individual
variability of the experimental units and may give an additional component of
variability which is not accounted for by the basic model.
» Correlation between individual responses.
* Cluster sampling.
» Aggregate level data: the aggregation process can lead to compound
distributions.
» Omitted unobserved variables: in some sense the other categories are all
special cases of this, but generally in a rather complex way.
In some circumstances the cause of the overdispersion may be apparent from
the nature of the data's collection process. Although it should be noted that different
explanations of the overdispersion process can lead to the same model, so in general it
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is difficult to infer the precise cause, or underlying process which leading to the
overdispersion.

Consequences of Overdispersion: When we identify the possible presence of
overdispersion, what are the consequences of failing to take it into account? Firstly,
the standard errors obtained from the model will be incorrect and may be seriously
underestimated and consequently we may incorrectly assess the significance of
individual regression parameters. Also, changes in deviance associated with model
terms will also be too large and this will lead to the selection of overly complex
models. Finally, interpretation of the model will be incorrect and any predictions will
be too precise.

It turns out that overdispersion is very common for count data and it typically
underestimates variability, standard errors and thus inflated p-values. There are a
number of ways of overcoming this limitation, the effectiveness of which depend on
the causes of overdispersion. The negative binomial model is useful for
accommodating overdispersion, when it is likely caused by clumping (due to the
influence of other unmeasured factors) within the response.

3. Relevant Literature:

The negative binomial distribution has been suggested by some as an alternative to
the Poisson when there is evidence of ‘‘overdispersion’’ (Paternoster and Brame
1997). Stated loosely for the moment, ‘‘overdispersion’’ implies that there is more
variability around the model’s fitted values than is consistent with a Poisson
formulation. The negative binomial is proposed as a means to correct for this
problem, and some go so far to say that it automatically does so (Osgood 2000). There
is a parameter whose estimated value inflates the Poisson dispersion as needed.
Regression modeling, broadly construed, has been skeptically examined before by a
large number of statisticians and social scientists. For example, in a recent book
written for social scientists, (Berk, 2003) unpacks what regression models require and
argues that in general they are best suited for descriptive purposes only. (Freedman,
2005) provides a more technical discussion that is no less critical. Morgan and
(Winship, 2007) make a case for abandoning conventional regression modeling
altogether in social research and suggest a counterfactual approach relying on various
kinds of matching strategies.

Logistic regression model with overdispersion will has unbiased maximum-
likelihood estimates. However, their standard error will be underestimated and
confidence interval becomes narrower than the actual one. As a result¢ significant test
for regression parameters may be unreliable« as it tends to reject null hypothesis of no
parameter effect which lead to misleading conclusion .The approach in handing
overdispersion was introduced firstly by (Williams, 1982). Williams equates the value
of Pearson’s chi-square statistic of the model to its expected value to obtain an
optimal value of inflation factor inserted in the weighting matrix of parameter
estimation. Previous study on logistic regression with overdispersion carried out by
(Kurnia, Saefuddin and Sutisna, 2002) and (Saefuddin, Setiabudi and Achsani, 2011)
showed that the parameter estimates were unbiased with small standard errors on
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standard logistic regression model. Applying Williams approach to the models,
produced different conclusion of parameter effects due to correction to the standard
errors of estimates.

Score tests for zero-inflation in Poisson and binomial regression models have

been investigated by van den (Broek, 1995) and (Deng & Paul, 2000).
Modeling using extended Poisson process models (EPPMs) was originally developed
by (Faddy, 1997), where the construction of discrete probability distributions having
very general dispersion properties was described. The Poisson and negative binomial
distributions are special cases of this modeling which includes both underdispersion
and overdispersion relative to the Poisson, with the negative binomial having the most
extreme level of overdispersion within the EPPM family. (Faddy and Smith, 2008)
incorporated covariate dependence in the mean via a reparameterization using an
approximate form of the mean; and (Faddy and Smith, 2011) extended this to
incorporate covariate dependence in the dispersion, this being achieved by a
reparameterization using an approximate form of the variance. The supplementary
material for (Faddy and Smith, 2011) contained R code illustrating fitting these
models. This R code has been extended and generalized to have inputs and outputs
more akin to those of a generalized linear model (GLM) as in the R function glm and
the R function betareg (Cribari-Neto and Zeileis 2010, Grin, Kosmidis, and Zeileis
2012).

There are many examples of overdispersed count models in ecology, with
important applications ranging from species richness to spatial distributions to
parasitism. (O’Hara, 2005) noted the differences between Poisson and negative
binomial distributions for species richness, with each being appropriate only when
data were simulated from the correct model. (Alexander et al., 2000) used a negative
binomial distribution with a spatial model of parasitism. (White and Bennetts, 1996)
modeled bird counts with a negative binomial distribution. For trend and abundance
estimation for harbor seals, (Frost et al., 1999) and (Small et al., 2003) and (Mathews
and Pendleton, 2006) used Poisson regression, (Ver Hoef and Frost, 2003) used an
overdispersed Poisson regression, and (Boveng et al., 2003) used negative binomial
regression.

Because overdispersion is so common, several models have been developed
for these data, including the negative binomial, quasi-Poisson (Wedderburn, 1974),
generalized Poisson (Consul, 1989) and zero-inflated (Lambert, 1995) models.
Relationships among some of the distributions can be found in (Joe and Zhu, 2005)
and (Lord et al.,2005). Despite these developments, the quasi-Poisson and negative
binomial models are used most often, largely because they are widely available in
software and they generalize easily to the regression case.

4. Methods:

In this Section, brief theoretical review of log-linear models using Poisson and
negative binomial distributions will be presented, and these methods will be utilized
to generate the data for this study.
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4.1. Log-linear model:

Loglinear models (LLM) study the relationships between a discreet response variable
(counts) and other explanatory variables. Often it referrers to analysis of multiway
frequency tables, and it can be considered as an extension of the familiar chi-square
test for independence in two-way contingency tables.

Limitations and Assumptions: Since the use of LLM requires few assumptions about
population distributions, they are remarkably free of limitations. They may be applied
to almost any circumstance in which the variables are (or can be made) discrete. It can
even be used to analyze continuous variables which fail to meet distributional
assumptions (by collapsing the continuous variables into a few categories).

Three basic assumptions should be considered when using LLM.

1. Observations are independent from each other. In practice, this means that each
observation comes from different subjects.

2. All observations are identically distributed. This means that they are obtained in
the same way.

3. The number of observations is large. Since LLM make use of large sample
approximations, they require large samples. The LLM algorithm begins by taking
the natural logarithm of each of the cell frequencies, so empty cells (those with
frequencies of zero) are not allowed. LLM appear to be less restrictive than
traditional chi-square contingency tests, so rules that are used for those tests may
be used for LLM analysis as well.

Fundamental Approach: LLM analysis requires two steps. It is easy to become lost
in details of each of these steps, but it is important to keep in mind the overall purpose
of each task,

1. Selecting an appropriate model. The first step is to find an appropriate model of
the data. Several techniques may be used to find an appropriate LLM. One of the
most popular is the step-down technique in which complex terms are removed
until all terms remaining are significant.

2. Interpreting the selected model. Once a model is selected, it must be interpreted. This is,
the step in which you determine what your data are telling you.

The Notation of Loglinear Models: Consider a two-way table in which the row-variable A
has categories (levels) (i=1,...,I Jand the column-variable B has categories ( j=1,...,J).
A multiplicative model that reproduces the cell frequencies( fij) exactly is

m;; = Naiﬁj}’i]-
Where[ mj; = E(fij ) ] is the expected frequency of the( i" Yrow and the (j™) column.

When the( m;; ) are estimated using maximum likelihood, the results are denoted( m;;).
Also note that:

N =2 fij
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One aspect of the table that is of interest is whether A and B are independent.
This is often tested using the familiar chi-square test. independence would be
established if all (y;;) were equal to one.

Because of its multiplicative form, the above formula is difficult to work with.
However, if we take the logarithm of both sides, we can rewrite it as
In(my) =0 + A7 + 4] + 4

The ( A's) are called effects. The superscript indicates the variable(s) and the
subscripts refer to the individual categories of those variables. The order of an effect
is equal to the number of variables in the superscript.

Because this formulation is additive, it is called a loglinear model. Because of the
logarithms, this model has the added constraint that none of the( m;;) are zero.

Notice that the total number of A’s in this model is[ 1+I+J+(I x J ) Jwhich is greater than the
number of cell frequencies (which is | x J ). When the number of parameters is greater than or
equal to the number of cells, we say the model is saturated. A saturated model reproduces the
observed frequencies exactly.

By testing whether certain of the ( A's) are zero, you can test various
interrelationships. For example, to test whether all of the frequencies are equal, you
would test whether all first-order and second-order effects (theA?’s, A%’s, and 148's)
are zero. Testing whether the ( 148’s) are zero would test whether variables A and B
are independent (no interaction).

Testing whether the (14’) were zero would test whether the probabilities of the
categories of A are equal. As you can see, this model will let you answer many
interesting questions about factors A and B.

Goodness of Fit: When dealing with several competing models, the relative quality of
each model must be considered. The quality of a model, as measured by its goodness
of fit to the data, may be tested using either of two chi-square statistics:

* The Pearson chi-square statistic

PR
2 (fije—Myjk)
xc=2).. e e

Zl,],k i

« The likelihood-ratio statistic

fij
G*=2%kfijk ln( ]k)

Myjk

Both of these statistics are distributed as a chi-square random variable when N
is large and none of the (7, ;) are small. If a few of the (m;;,) are small, the chi-
square approximation is still fairly close. Both of these statistics have n-p degrees of
freedom where (n) is the number of cells in the table and (p) is the number of
parameters in the model on which the (7, ;) are based.

You should understand exactly what these two chi-square statistics are testing.
They test whether the terms in the saturated model that are not included in the current
model are significantly different from zero.

Benghazi Modern University

info.jmbush@bmu.edu.ly Dr.salahshalufi@bmu.edu.ly
Mobile +218945429096




A word of Caution: the difference between the two (G?) is distributed as a chi-square
only when the more complete model fits the data adequately. That means that the (G?)
of the larger model should be nonsignificant. Because of the additively property of
(G?), it is very popular in LLM.

Again, this additively property does not hold for the Pearson chi-square
statistic. Why do we even compute this value? Why not just use the likelihood ratio
statistic?

First, some studies indicate that the Pearson goodness of fit test may be more
accurate. Second, since both of these are asymptotic tests, you can be more
comfortable with small sample results when both tests lead to the same conclusion.

Model Selection Techniques: Since your first task in the analysis is to find a well-
fitting model with as few terms as possible, you must adopt some method to limit the
number of models you consider. The program provides several possible model
selection methods. The final model will result from applying several of these
techniques to your data.

4.2. The Poisson Model:

Poisson regression is similar to regular multiple regressions models except that the
dependent (Y) variable is an observed count that follows the Poisson distribution.
Thus, the possible values of Y are the nonnegative integers: 0, 1, 2, 3, and so on. It is
assumed that large counts are rare. Hence, Poisson regression is similar to logistic
regression, which also has a discrete response variable. However, the response is not
limited to specific values as it is in logistic regression (y=0 or 1).

Most books on regression analysis briefly discuss Poisson regression, such as
(Cameron and Trivedi, 1998).

The Poisson distribution: The Poisson distribution can be written,

e_” y
Pr(Y =ylp) =

> (y=0,1,2,..)

Notice that the Poisson distribution is specified with a single parameter(u).
This is the mean incidence rate of a rare event per unit of exposure. Exposure may be
time, space, distance, area, volume, or population size. Because exposure is often a
period of time, we use the symbol (t) to represent the exposure. When no exposure
value is given, it is assumed to be one.
The parameter (1) may be interpreted as the risk of a new occurrence of the event
during a specified exposure period, (t). The probability of ('y) events is then given by

—ut ey

Pr(Y =y|ut) = ry=012.)

y!

The Poisson distribution has the property that its mean and variance are equal.
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The Poisson Regression Model: In Poisson regression, we suppose that the Poisson
incidence rate (u) is determined by a set of (k) explanatory variables (the X’s). The
expression relating these quantities is

p = texp(B1x1 + Baxz + ...+ BrXy)

Note that often [x; = 1], and (B,) is called the intercept. The regression coefficients
[B1, B2, --- Bx] are unknown parameters that are estimated from a set of data. Their
estimates are labeled [by, b,, ... bi] Using this notation, the fundamental Poisson
regression model for an observation (t) is written as

e Miti(u;t;)”

yi!

Pr(Y =ylp; t;) =
Where
wi = tiu(X;B)

= t;iexp(B1xi1 + BaXiz + ...+ BrXix)

That is, for a given set of values of the explanatory variables, the outcome
follows the Poisson distribution.

Solution by Maximum Likelihood Estimation: The regression coefficients are
estimated using the method of maximum likelihood. The logarithm of the likelihood
function is,

In[£L(y, )] = XiLq yiIn[t;u(X;B)] — XiL, tin(X;B) — XiLq In(y;)

Note that some statistical packages ignore the last term since it does not
involve the regression parameters. This will make their calculated log-likelihoods
different from ours.

The likelihood equations may be formed by taking the derivatives with respect
to each regression coefficient and setting the result equal to zero. Doing this leads to a
set of nonlinear equations that admits no closed-form solution. Thus, an iterative
algorithm must be used to find the set of regression coefficients that maximum the
loglikelihood. Using the method of iteratively reweighted least squares, a solution
may be found in five or six iterations.

Distribution of the MLE’s: Applying the usual maximum likelihood theory, the
asymptotic distribution of the maximum likelihood estimates (MLE’s) is multivariate
normal. That is,
B~N(B,BVp) , where Vg = (Niq poxix) ™

Remember that in the Poisson model the mean and the variance are equal. In
practice, the data almost always reject this restriction. Usually, the variance is greater
than the mean and this situation called overdispersion. The increase in variance is
represented in the model by a constant multiple of the variance-covariance matrix.
That is, we use,
Vg = O™ wixix))~1, where (¢ ) is estimated using
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= _ 1 on i—R)*
Q) o n—k i=1 ﬁi
Goodness of Fit Tests: Overall performance of the model is measured by two chi-

square tests,

Pp =" oimR)® and the deviance, or G?statistic
P — i=1 Il ] I}

~

Dp =%y {J’i In (%) —(i— ﬁi)}

Both of these statistics are approximately chi-square distributed with n - k
degrees of freedom. When a test is rejected, there is a significant lack of fit. When a
test is not rejected, there is no evidence of lack of fit.

The Pearson statistic is only chi-square distributed when you are analyzing
grouped data, so if you are not using a frequency variable, you should not use the
Pearson statistic as a goodness of fit test. The Pearson statistic may be used as a test of
overdispersion.

Deviance: The deviance is twice the difference between the maximum achievable
log-likelihood and the log-likelihood of the fitted model. In multiple regression
models and under the assumption of normality, the deviance is the residual sum of
squares. In the case of Poisson regression, the deviance is a generalization of the sum
of squares and it is as same as the Pearson chi square and G2 tests. The formula for the
deviance is

D(y,fi) = 2{LLy — LLg}

4.3. Negative binomial model:
The Negative Binomial Distribution: The Poisson distribution may be generalized by
including a gamma noise variable which has a mean of (1) and a scale parameter of

(v). The Poisson-gamma mixture (negative binomial) distribution that results is
-1

_ __Tita™h al Ty,
Pl‘(Y - yil”i’ O() T ri+Dr(ab) (a‘1+ui) (a‘1+u,-)
Where

1
pi=tip, a=-

The parameter («) is the mean incidence rate of (y) per unit of exposure.
Exposure may be time, space, distance, area, volume, or population size. Because
exposure is often a period of time we use the symbol (t;) to represent the exposure for
a particular observation, and when no exposure given it is assumed to be one.

The parameter (1) may be interpreted as the risk of a new occurrence of the event
during a specified exposure period, (t).

The results below make use of the following relationship derived from the

definition of the gamma function

in ("57) = 55 mG + @)
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The Negative Binomial Regression Model: In negative binomial regression, the mean
of (y) is determined by the exposure time (t) and a set of (k) regressor variables(the
x’s). The expression relating these quantities is

pi = exp(In(t;) + B1xin + B2Xiz + ..+ Brxur)

Often 1 =1, in which case (f1) is called the intercept. The regression coefficients (51,
So, ..., Px) are unknown parameters that are estimated from a set of data. Their
estimates are symbolized as (by, b, ..., by.

Using this notation, the fundamental negative binomial regression model for an

observation (i) is written as
-1

B _ _Toita™ LI A TN
PI'(Y - yll”l! a) - l—-(a—l)]"(yl-+1) (1+alli) (1+aﬂi)

Solution by Maximum Likelihood Estimation: The regression coefficients are
estimated using the method of maximum likelihood. (Cameron 2013, page 81) gives
the logarithm of the likelihood function as
L =YL {In[l(y; +a D] - In[[(@ D] - In[[(y; + D] —a " In[1 + ap;] -
yiln[1 + ap;] +y; In(a) + y;in(u;)}
Rearranging gives

=y {5 G + @) — (In(T (i + D) = 0+ @D In(1 + ap)) +

yiln(uy) + y; In(a)}
The first derivatives of £ were given by (Cameron, 2013) and (Lawless, 1987) as

aL n xijitp) ,
— =) =12, ..,k
a[f,- i=1 1+ap; ’ ] re ’

==y {a? (ln(1+“ﬂl) Z,ylo ,+a—1) a(1+au,)}

-9%L 1+ay))xirx;
Zn wi( Yi)XirXis rs= 1’ 2’ . k
B0 a(1+ap;)?
n  HiQyiti)xir
— 2 r=12 ..,k
aﬂraa = 2i-1 (1+ap;)?

-9%L n y,-—l( i )2 -3 2% (yita Dpi®
— = Dis112; — 2a°In(1 i) — - —
da? ‘—1{ 120 \j+aj o A+ ap) lhap;  (1+ap)?

Equating the gradients to zero gives the following set of likelihood equations
n xl](yl ) =0 , ]- — 1’ 2, . k

i=1 1+au;
i i) | _
{(a (ln(l + aﬂ[) Z] =0 ]+a—1) a(1+au,—)} =0

Distribution of the MLE’s: (Cameron, 2013) gives the asymptotic distribution of the
maximum likelihood estimates as multivariate normal as follows,
[ ] Vi) Cov(B,@)

Cov(ﬁ a) V(a)
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Where

-1
v(B) = [Zl 11+au ,x;]

-1
V(a) = { 4(111(1 + aﬂz) Z] =0 ]+(x_1) a2(1+all )}
Cov(B, &) =0

Deviance: The deviance is twice the difference between the maximum achievable
log-likelihood and the log-likelihood of the fitted model. In multiple regression
models under the assumption of normality, the deviance is the residual sum of
squares. In the case of negative binomial regression, the deviance is a generalization
of the sum of squares. The maximum possible log likelihood is computed by replacing
(wi) with (yi) in the likelihood formula. Thus, we have

D =2[L(y;) — L(u)]

i - 1tay; i
=2y, {yi ln(i) —(it+a) ln(;zi }

4.4. Procedures:

Our data in this work are generated using (SAS) program, and they represent count
observations of two different discrete distributions. SAS Monte Carlo simulation will
be used over large number of replications (10,000). In each replication the program
will generate a contingency tables of (2x2), (3x3) and (4x4) counts. The counts will
be randomly generated such that the rows and the columns will be independent. The
(10000) replications will be applied on some selected distributions, counts of Poisson
distribution with specified average and counts of discrete uniform distribution with
specified average. Poisson distribution will represent the regular case and the uniform
distribution will represent the overdispersion case (light tailed distribution). The
process will be replicated on some selected count averages of both distributions
(Count averages: 5, 50, 100, 200 and 400).

In each replication, the program will fit a log-linear model such that the rows
and the columns are independent. The empirical p-values (type I error) of the model
fit’s test (from each replication) will be collected and changed to indicator variable (0)
or (1). The program will record the value (1) in case of rejecting the null hypothesis
(the model is fit) and (0) in case of acceptance. These values will be collected in a
data set during (10000) replications stage. Finally, the proportion of rejection will be
calculated over all (10000) replications. The calculated proportion will represent the
probability of type one error since our generated counts are random in each
replication. This process will be repeated for all distribution cases and count average
cases.

We will apply the log-linear model using both Poisson distribution and the
negative binomial distribution on the generated counts from Poisson and Uniform
distribution. The performance of each model will be evaluated according to the
probability of type I error for all simulation stages.
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5. Results:

The following tables shows the probabilities of type one error for each model over all
cases:

Empirical Type-I error for each case over 10000 replications
(2x2 Contingency Tables)

Count Counts generated from Poisson Counts generated from uniform
av;)rlja\n . distribution (Regular case) distribution (Overdispersion case)
9 Poisson Model ~ Neg.bin Model  Poisson Model ~ Neg.bin Model
5 0.0600 0.0259 0.0270 0.0120
50 0.0510 0.0530 0.5580 0.3110
100 0.0520 0.0490 0.6920 0.4787
200 0.0480 0.0390 0.7870 0.3790
400 0.0550 0.0460 0.8531 0.4490

In case of counts generated from Poisson distribution the Poisson model gave
probabilities of type one error close to 0.05 for most count averages. as well in case
negative binomial model gave probabilities of type one error close to to 0.05. except
one case (count average = 5) the probability of type one error equal to 0.02
In case of counts generated from light tailed distribution (Uniform), turns out that

both models gave large probabilities of type one error for all count averages. But
whenever the sample increased then the negative binomial model has less probability
of type one error compare to Poisson model.

Empirical Type-I error for each case over 10000 replications
(3x3 Contingency Tables)

Counts generated from Poisson Counts generated from uniform
Count o o . .
distribution (Regular case) distribution (Overdispersion case)
average - . . .
Poisson Model ~ Neg.bin Model  Poisson Model ~ Neg.bin Model
5 0.0399 0.0180 0.0010 0.0002
50 0.0487 0.0010 0.9290 0.1220
100 0.0499 0.0220 0.9800 0.0780
200 0.052 0.0302 0.9980 0.0430
400 0.0469 0.0620 1.0000 0.0320

In case of counts generated from Poisson distribution the Poisson model gave
probabilities of type one error close to 0.05 for all count averages which is reasonable
result. By comparing the results (Poisson model and negative binomial model), The
negative binomial model gave small probability of type one for small samples size
(0.0181for count average = 5), (0.0010, for count average = 50), and( 0.0220 for
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count average = 100) and it became close to the Poisson model results with increasing
sample size.

in case of counts generated from light tailed distribution (Uniform), the
Poisson model gave larger probabilities of type one error in all cases, Increases by
increasing sample size (large count average). And The negative binomial model gave
large probability only in case of sample (count average = 50), and It gave a small and
satisfying probabilities with increase the sample size (large count averages).

Probability of Type-I error for each case over 10000 replications
(4x4 Contingency Tables)

Counts generated from Poisson Counts generated from uniform
Count distribution (Regular case) distribution (Overdispersion case)
average - - - -

Poisson Model ~ Neg.bin Model  Poisson Model ~ Neg.bin Model
5 0.0511 0.3610 0.6561 0.4923
50 0.0466 0.2039 0.9998 0.0123
100 0.0572 0.1513 1.0000 0.0042
200 0.0497 0.0837 1.0000 0.0040
400 0.0500 0.0348 1.0000 0.0036

In case of counts generated from Poisson distribution the Poisson model gave
probabilities of type one error close to 0.05 for all count averages which is reasonable
result. The negative binomial model gave large probability of type one for small
sample size (0.361 for count average = 5) , (0.2039, for count average = 50) and
(0.1513 for count average = 100) and it became smaller as the sample size increase.

In case of counts generated from light tailed distribution (Uniform), the Poisson
model gave larger probabilities of type one error in all cases, especially when the
sample size is large (large count average). The negative binomial model gave large
probability only in case of small sample (count average = 5), and it gave smaller
probabilities as well as the sample increased (large count averages).

6. Summary and Conclusions:

This paper introduced the Poisson and negative binomial models as appropriate
techniques to describe two-Way Contingency Tables (or a count data) of a response
variable.

Through the above results, the study concluded that the Poisson model is
severely affected by the existence of overdispersion problem, and gave large
probability of type one error even if the count average is small. The negative binomial
model is a good To reduce the problem of overdispersion in data of contingency
tables, especially when the count average is large enough.

So for an overdispersion data, the negative binomial model is better than the Poisson
model.
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