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للعلوم  الحدٌثة مجلة جامسعة بنغامزيشروط كحامبة البحث العلمً في 
 والدراسامت الإنسامنٍة

 

 كهًح(. 051انًهخض تانهغح انؼشتٛح ٔتانهغح الاَعهٛضٚح ) -1

 انًمذيح، ٔذشًم انرانٙ: -2

 .)َثزج ػٍ يٕضٕع انذساسح )يذخم 

 .يشكهح انذساسح 

  .أًْٛح انذساسح 

 ذساسح. أْذاف ان 

  .انًُٓط انؼهًٙ انًرثغ فٙ انذساسح 

 انرٕطٛاخ(. -انخاذًح. )أْى َرائط انثحس  -3

 لائًح انًظادس ٔانًشاظغ. -4

 .انًشاظغانًظادس ٔ( طفحح يرضًُح انًلاحك ٔلائًح 55ػذد طفحاخ انثحس لا ذضٚذ ػٍ ) -5

 القواعد العامسة لقبول النشر
 ا انششٔط اٜذٛح:الاَعهٛضٚح؛ ٔانرٙ ذرٕافش فٛٓذمثم انًعهح َشش انثحٕز تانهغرٍٛ انؼشتٛح ٔ    .0

 ،ًٔذرٕافش فّٛ ششٔط انثحس انؼهًٙ انًؼرًذ ػهٗ الأطٕل انؼهًٛح ٔانًُٓعٛح  أٌ ٚكٌٕ انثحس أطٛلا

يٍ حٛس الإحاطح ٔالاسرمظاء ٔالإضافح انًؼشفٛح )انُرائط( ٔانًُٓعٛح ٔانرٕشٛك ٔسلايح انًرؼاسف ػهٛٓا 

 .انهغح ٔدلح انرؼثٛش

 ٕأٔ يسرم يٍ سسانح أٔ اطشٔحح ػهًٛح ٌ انثحس لذ سثك َششج أٔ لذٌو نهُشش فٙ أ٘ ظٓح أخشٖألا ٚك. 

 ٌٔيطثٕػاَ ػهٗ يهف ٔٔسد،  -إٌ ٔظذخ  - ٚكٌٕ انثحس يشاػٛاً نمٕاػذ انضثظ ٔدلح انشسٕو ٔالأشكال أ

 Times New( تخظ )05( نهغح انؼشتٛح. ٔحعى انخظ )'Arial 'Body( ٔتخظ )01حعى  انخظ )

Roman.نهغح الإَعهٛضٚح ) 

 أٌ ذكٌٕ انعذأل ٔالأشكال يذسظح فٙ أياكُٓا انظحٛحح، ٔأٌ ذشًم انؼُأٍٚ ٔانثٛاَاخ الإٚضاحٛح.  

 أٌ ٚكٌٕ انثحس يهرضيا تذلح انرٕشٛك حسة دنٛم ظًؼٛح ػهى انُفس الأيشٚكٛح APA))  ٔذصثٛد ْٕايش

 انُحٕ اٜذٙ: انًشاظغ فٙ َٓاٚح انثحس ػهٗانًظادس ٔانثحس فٙ َفس انظفحح ٔ

 ٌانًظذس،  أٌ ذصُثد انًشاظغ تزكش اسى انًؤنف، شى ٕٚضغ ذاسٚخ َششج تٍٛ حاطشذٍٛ، ٔٚهٙ رنك ػُٕا

 .انظفحح ٔسلىٔسلى انعضء، يرثٕػاً تاسى انًحمك أٔ انًرشظى، ٔداس انُشش، ٔيكاٌ انُشش، 

 ٚزُكش اسى  نهثحس: ػُذ اسرخذاو انذٔسٚاخ )انًعلاخ، انًؤذًشاخ انؼهًٛح، انُذٔاخ( تٕطفٓا يشاظغ

طاحة انًمانح كايلاً، شى ذاسٚخ انُشش تٍٛ حاطشذٍٛ، شى ػُٕاٌ انًمانح، شى ركش اسى انًعهح، شى سلى 

 .انظفحح انًعهذ، شى سلى انؼذد، ٔداس انُشش، ٔيكاٌ انُشش، ٔسلى

هح انذساسح، يشك كهًح( تحٛس ٚرضًٍ 051ٚمذو انثاحس يهخض تانهغرٍٛ انؼشتٛح ٔالاَعهٛضٚح فٙ حذٔد )   .2

فٙ َٓاٚح  انشئٛسٛحٔٔضغ انكهًاخ  .انذساسح ، َٔرائطانذساسح يُٓعٛحٔانٓذف انشئٛسٙ نهذساسح، ٔ

 ). انًهخض )خًس كهًاخ
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 تحمٓا فٙ أسهٕب إخشاض انثحس انُٓائٙ ػُذ انُشش.ظايؼح تُغاص٘ انحذٚصح  ذحرفظ يعهح  .3

 النشر إجراءات
 كانرانٙ:  ْٕٔظايؼح تُغاص٘ انحذٚصح  ٙ انخاص تانًعهحانًٕاد ػثش انثشٚذ الانكرشَٔ ظًٛغ ذشسم

 ( ُٚشسم انثحس انكرشَٔٛا Pdf  +Word )  إنٗ ػُٕاٌ انًعهحinfo.jmbush@bmu.edu.ly  أ َسخح

 ٚظٓش فٙ انثحس اسى انثاحس ٔنمثح انؼهًٙ، ٔيكاٌ ػًهح، ٔيعانّ. تحٛس CDػهٗ 

 ػهٗ يٕلغ انًعهح( ٔكزنك اسفاق يٕظض نهسٛشج  ٚشفك يغ انثحس ًَٕرض ذمذٚى ٔسلح تحصٛح نهُشش )يٕظٕد

 انزاذٛح نهثاحس إنكرشَٔٛاً.

  .لا ٚمثم اسرلاو انٕسلح انؼهًٛح الا تششٔط ٔفٕسياخ يعهح ظايؼح تُغاص٘ انحذٚصح 

  فٙ حانح لثٕل انثحس يثذئٛاً ٚرى ػشضح ػهٗ يُحكًٍُٛ يٍ رٔ٘ الاخرظاص فٙ يعال انثحس، ٔٚرى

ؼشع ػهٛٓى اسى انثاحس أٔ تٛاَاذّ، ٔرنك لإتذاء آسائٓى حٕل يذٖ أطانح اخرٛاسْى تسشٚح ذايح، ٔلا ُٚ 

انثحس، ٔلًٛرّ انؼهًٛح، ٔيذٖ انرضاو انثاحس تانًُٓعٛح انًرؼاسف ػهٛٓا، ٔٚطهة يٍ انًحكى ذحذٚذ يذٖ 

 طلاحٛح انثحس نهُشش فٙ انًعهح يٍ ػذيٓا.

 ٍٚيٍ ذاسٚخ الاسرلاو نهثحس، ٔتًٕػذ  ٚخُطش انثاحس تمشاس طلاحٛح تحصّ نهُشش يٍ ػذيٓا خلال شٓش

 انُشش، ٔسلى انؼذد انز٘ سُٛشش فّٛ انثحس.

  فٙ حانح ٔسٔد يلاحظاخ يٍ انًحكًٍُٛ، ذشُسم ذهك انًلاحظاخ إنٗ انثاحس لإظشاء انرؼذٚلاخ انلاصيح

 .ػششج أٚاوتًٕظثٓا، ػهٗ أٌ ذؼاد نهًعهح خلال يذج ألظاْا 

 ْا لا ذؼاد إنٗ انثاحصٍٛ.الأتحاز انرٙ نى ذرى انًٕافمح ػهٗ َشش 

 فًٛا ُٚشش يٍ دساساخ ٔتحٕز ٔػشٔع ذؼثش ػٍ أساء أطحاتٓا. الأفكاس انٕاسدج 

 يٍ انًٕاد انًُشٕسج فٙ انًعهح يشج أخشٖ. إ٘ َشش لا ٚعٕص 

 ( ِ511( دُٚاس نٛثٙ إرا كاٌ انثاحس يٍ داخم نٛثٛا، ٔ )د.ل 111ٚذفغ انشاغة فٙ َشش تحصّ يثهغ لذس $ )

 -ليبيا  –بنغازي (: ػهًاً تأٌ حساتُا انماتم نهرحٕٚم ْٕ .إرا كاٌ انثاحس يٍ خاسض نٛثٛادٔلاس أيشٚكٙ 

. الاسم )صلاح الأمين 0000-445520-000 ، رقمبنغازي -الرئيسي فرع المصرف التجارة والتنميت، 

 .عبدالله محمد(

 ظًٛغ انًٕاد انًُشٕسج فٙ انًعهح ذخضغ نمإٌَ حمٕق انًهكٛح انفكشٚح نهًعهح. 

 

info.jmbush@bmu.edu.ly 

00218913262838 

 

 د. طلاغ الأيٍٛ ػثذالله                                                                           

 سئٛس ذحشٚش يعهح ظايؼح تُغاص٘ انحذٚصح                                                               

                 Dr.salahshalufi@bmu.edu.ly 
  

 

 

https://ws01.server.ly:8443/smb/email-address/edit/id/985
https://ws01.server.ly:8443/smb/email-address/edit/id/985
https://ws01.server.ly:8443/smb/email-address/edit/id/986
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Impact of Overdispersion on Log-linear Models for 

Contingency Tables 
 

Dr. Jalal A. Moaiti,* Radi A. Othman,** Ali M. Moftah*** 
 

(Members of Teaching Staff, Department of Statistics, Faculty of Arts and Sciences, University of 

Benghazi, Libya)  

 

 

Abstract: 

 

Most of the practical studies in social, medical and many other sciences have utilized 

the use of chi square to study the relationship between many types of categorical data, 

and it has been widely used. However, the use of chi square test of independence can 

be affected by overdispersed counts of a contingency table.  In this work, the effect of 

the overdispersion on the log-linear models using Poisson distribution and negative 

binomial distribution is investigated. These models were applied on (2x2), (3x3) and 

(4x4) generated contingency tables of overdispersed and Poisson distributions. A 

simulation study was applied on different conditions of counts average and degree of 

dispersion. The Poisson distribution was severely affected by the overdispersion of 

the data. As a solution to this problem, the negative binomial distribution was used 

and it found that, it performed  well to alleviate of this problem in some cases of the 

simulation stages. However, using the Poisson model on overdispersed counts of a 

contingency table, can inflate the Type one error of the deviance and the Pearson chi 

square as well. 
 
 

Keywords: Poisson regression model, Negative binomial regression model, Log-

linear Models, Overdispersion. 
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 جأثير الحشحث السائد على النمامذج الخطٍة اللوغامرٌحمٍة لجداول الحوافق
 

 

 على محبوب مفتاح أ.، *** أ. راضي عبدالرحيم عثمان، ** د. جلال عبدالله امعيطي* 
 

 لٌبٌا( -جامعة بنغازي  –والعلوم المرج  الآدابكلٌة  –ة تدرٌس بقسم الاحصاء ٌئأعضاء ه ) 

 ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
 

 الملخص :
عٌة والطبٌة والعدٌد من العلوم الأخرى تستخدم على معظم الدراسات فً العلوم الاجتما      

، ولكن لدراسة العلاقة بٌن البٌانات الوصفٌة (chi square test)نطاق واسع اختبار مربع كاي 
فً هذا  .ٌمكن أن ٌتأثر استخدام اختبار مربع كاي للاستقلالٌة بالتشتت الزائد فً جداول التوافق

على النماذج الخطٌة  (Overdispersion)شتت الزائد الدراسة تم التحقق من تأثٌر الت

، حٌث تم تطبٌق هذه النماذج اللوغارٌتمٌة باستخدام توزٌع بواسون وتوزٌع ذي الحدٌن السالب
، حالة تمثل التشتت الزائد والأخرى فً حالتٌن (1×1)و( 3×3)و  (5×5)بتولٌد جداول التوافق 

اة على ظروف مختلفة من متوسط التكرارات تمثل توزٌعات بواسون. وطبقت دراسة محاك
(counts average) تأثر بشدة من التشتت الزائد  واتضح أن توزٌع بواسون .ودرجة التشتت

للحد  ، تم استخدام توزٌع ذي الحدٌن السلبً واتضح أنه كان جٌدًا. وكحل لهذه المشكلةبالبٌانات
 وبالتالً فإن استخدام نموذج .المحاكاة فً بعض حالات مراحل من تأثٌر مشكلة التشتت الزائد

عند وجود التشتت الزائد فً لجدول التوافق ٌمكن أن ٌؤدي إلى تضخٌم خطأ النوع  بواسون
 .أٌضًا (Pearson chi square)وبٌرسون مربع كاي  (deviance)الأول فً الانحراف 

 
 

، نموذج انحدار ذي ارٌتمٌةالنماذج الخطٌة اللوغ، نموذج انحدار بواسون :الكلمات المفتاحية
 .، التشتت الزائدالحدٌن السالب
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1.Introduction: 

 

Loglinear models (LLM) are using to study the relationships among two or more 

discrete variables. Often referred to multiway frequency analysis and it is an 

extension of the familiar chi-square test for independence in two-way contingency 

tables. LLM may be used to analyze surveys and questionnaires which have complex 

interrelationships among several questions. Although questionnaires are often 

analyzed by considering only two questions at a time, this ignores the important of 

three-way and multiway relationships among the questions. The use of LLM on this 

type of data is analogous to the use of multiple Poisson regression rather than simple 

correlations of data. 

  

Brief History: Until the late 1960‟s, contingency tables (two-way tables formed by 

cross classifying categorical variables) were typically analyzed by calculating chi-

square values to test the hypothesis of independence. When tables consisted of more 

than two variables, researchers would compute the chi-squares for two-way tables and 

then again for multiple sub-tables formed from them, in order to determine if 

associations and/or interactions were taking place among the variables. In the 1970‟s 

the analysis of cross-classified data changed quite dramatically with the publication of 

a series of papers on loglinear models by L.A. Goodman. Many other books appeared 

around that time building on Goodman‟s work (Bishop, Finberg & Holland 1975; 

Haberman 1974). Now researchers were introduced to a wide variety of models that 

could be fitted to cross-classified data. Thus, the introduction of the loglinear model 

provided them with a formal and rigorous method for selecting a model or models for 

describing associations between variables. 
 
Overview: The loglinear model is one of the specialized classes of generalized linear 

models when the distribution of data is a Poisson-distribution. Loglinear models class 

is an extension of the two-way contingency table where the conditional relationship 

between two or more discrete categorical variables is analyzed by taking the natural 

logarithm of the cell frequencies of a contingency table. Although loglinear models 

can be used to analyze the relationship between two categorical variables (two-way 

contingency tables), they are more commonly used to evaluate multiway contingency 

tables that involve three or more variables. The variables analyzed by log linear 

models are a response variable which represents the counts, and other explanatory 

variables. Therefore, loglinear models are demonstrate the individual and interaction 

effects of the explanatory variables on a response variable.  

 

Basic Strategy and Key Concepts: The basic strategy in loglinear modeling involves 

fitting models to the observed frequencies in the cross-tabulation of categorical 

variables. The models can then be represented by a set of expected frequencies that 

may or may not resemble the observed frequencies. Models will vary in terms of the 

marginal they fit, and can be described in terms of the constraints they place on the 

associations or interactions that are present in the data. The pattern of association 

among variables can be described by a set of odds and by one or more odds ratios 

derived from them. Once expected frequencies are obtained, we then compare models 

that are hierarchical to one another and choose a preferred model, which is the most 

parsimonious model that fits the data. It‟s important to note that a model is not chosen 

if it bears no resemblance to the observed data. The choice of a preferred model is 
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typically based on a formal comparison of goodness-of-fit statistics associated with 

models that are related hierarchically (models containing higher order terms also 

implicitly include all lower order terms). Ultimately, the preferred model should 

distinguish between the pattern of the variables in the data and sampling variability, 

thus providing a defensible interpretation. Modeling count variables is a common task 

in economics and the social sciences. The classical Poisson regression model for 

count data is often of limited use since empirical count data sets usually exhibit 

overdispersion with the counts. Another more formal way can be used as a solution to 

this problem, is using Negative Binomial model instead. In this study, the impact of 

overdispersion on the Poisson model along with the Negative Binomial model will be 

investigated. SAS Monte Carlo simulation procedure will be used to generate counts 

of light-tailed (Uniform) and Poisson distributions, and then these models will be 

fitted to some conditions of contingency tables. The focus will be on the type-I error 

rate of the deviance and ordinary Pearson chi square goodness of fit of these models. 

 

2. The Problem: 

    

When applying generalized linear models with a known scale as is certainly the case 

for the binomial and Poisson distributions where (∅ =1), subject to certain asymptotic 

conditions for a well fitting model we would expect: 

Residual Deviance    Residual degrees of freedom (df). 

What if the Residual Deviance   Residual df ?  

There are two possible scenarios we need to consider: 

(i) We may simple have a badly fitting model for one of a number of reasons such as: 

• Omitted terms or variables in the linear predictor; 

• Incorrect relationship between mean and explanatory variables, i.e. 

We may have the wrong link function or need to transform one or more explanatory 

variables; 

• Outliers. 

Standard model diagnostics allow us to explore these aspects, see Mc-Cullagh and 

Nelder (1989), Chapter 12. 

(ii)The variation may simply be greater than that predicted by model and it is this 

phenomenon that is described as overdispersion  then we have: 

• Count data with           . 

• Proportion data with                     . 

Causes of Overdispersion: There are many different possible causes of 

overdispersion and in any modeling situation a number of these could be involved. 

Some possibilities are: 

• Variability of experimental material: this can be thought of as individual 

variability of the experimental units and may give an additional component of 

variability which is not accounted for by the basic model. 

• Correlation between individual responses. 

• Cluster sampling. 

• Aggregate level data: the aggregation process can lead to compound 

distributions. 

• Omitted unobserved variables: in some sense the other categories are all 

special cases of this, but generally in a rather complex way. 

  In some circumstances the cause of the overdispersion may be apparent from 

the nature of the data's collection process. Although it should be noted that different 

explanations of the overdispersion process can lead to the same model, so in general it 
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is difficult to infer the precise cause, or underlying process which leading to  the 

overdispersion. 

 

Consequences of Overdispersion: When we identify the possible presence of 

overdispersion, what are the consequences of failing to take it into account?  Firstly, 

the standard errors obtained from the model will be incorrect and may be seriously 

underestimated and consequently we may incorrectly assess the significance of 

individual regression parameters. Also, changes in deviance associated with model 

terms will also be too large and this will lead to the selection of overly complex 

models. Finally, interpretation of the model will be incorrect and any predictions will 

be too precise. 

It turns out that overdispersion is very common for count data and it typically 

underestimates variability, standard errors and thus inflated p-values. There are a 

number of ways of overcoming this limitation, the effectiveness of which depend on 

the causes of overdispersion. The negative binomial model is useful for 

accommodating overdispersion, when it is likely caused by clumping (due to the 

influence of other unmeasured factors) within the response. 

 

3. Relevant Literature:  

    

The negative binomial distribution has been suggested by some as an alternative to 

the Poisson when there is evidence of „„overdispersion‟‟ (Paternoster and Brame 

0991). Stated loosely for the moment, „„overdispersion‟‟ implies that there is more 

variability around the model‟s fitted values than is consistent with a Poisson 

formulation. The negative binomial is proposed as a means to correct for this 

problem, and some go so far to say that it automatically does so (Osgood 2000). There 

is a parameter whose estimated value inflates the Poisson dispersion as needed. 

Regression modeling, broadly construed, has been skeptically examined before by a 

large number of statisticians and social scientists. For example, in a recent book 

written for social scientists, (Berk, 2003) unpacks what regression models require and 

argues that in general they are best suited for descriptive purposes only. (Freedman, 

2005) provides a more technical discussion that is no less critical. Morgan and 

(Winship, 2007) make a case for abandoning conventional regression modeling 

altogether in social research and suggest a counterfactual approach relying on various 

kinds of matching strategies. 

Logistic regression model with overdispersion will has unbiased maximum-

likelihood estimates. However, their standard error will be underestimated and 

confidence interval becomes narrower than the actual one. As a result، significant test 

for regression parameters may be unreliable، as it tends to reject null hypothesis of no 

parameter effect which lead to misleading conclusion .The approach in handing 

overdispersion was introduced firstly by (Williams, 1982). Williams equates the value 

of Pearson‟s chi-square statistic of the model to its expected value to obtain an 

optimal value of inflation factor inserted in the weighting matrix of parameter 

estimation. Previous study on logistic regression with overdispersion carried out by 

(Kurnia, Saefuddin and Sutisna, 2002) and (Saefuddin, Setiabudi and Achsani, 2011) 

showed that the parameter estimates were unbiased with small standard errors on 
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standard logistic regression model. Applying Williams approach to the models, 

produced different conclusion of parameter effects due to correction to the standard 

errors of estimates.  

Score tests for zero-inflation in Poisson and binomial regression models have 

been investigated by van den (Broek, 1995) and (Deng & Paul, 2000(.  

Modeling using extended Poisson process models (EPPMs) was originally developed 

by (Faddy, 1997), where the construction of discrete probability distributions having 

very general dispersion properties was described. The Poisson and negative binomial 

distributions are special cases of this modeling which includes both underdispersion 

and overdispersion relative to the Poisson, with the negative binomial having the most 

extreme level of overdispersion within the EPPM family. (Faddy and Smith, 2008) 

incorporated covariate dependence in the mean via a reparameterization using an 

approximate form of the mean; and (Faddy and Smith, 2011) extended this to 

incorporate covariate dependence in the dispersion, this being achieved by a 

reparameterization using an approximate form of the variance. The supplementary 

material for (Faddy and Smith, 2011) contained R code illustrating fitting these 

models. This R code has been extended and generalized to have inputs and outputs 

more akin to those of a generalized linear model (GLM) as in the R function glm and 

the R function betareg (Cribari-Neto and Zeileis 2010, Grün, Kosmidis, and Zeileis 

2012). 

There are many examples of overdispersed count models in ecology, with 

important applications ranging from species richness to spatial distributions to 

parasitism. (O‟Hara, 2005) noted the differences between Poisson and negative 

binomial distributions for species richness, with each being appropriate only when 

data were simulated from the correct model. (Alexander et al., 2000) used a negative 

binomial distribution with a spatial model of parasitism. (White and Bennetts, 1996) 

modeled bird counts with a negative binomial distribution. For trend and abundance 

estimation for harbor seals, (Frost et al., 1999) and (Small et al., 2003) and (Mathews 

and Pendleton, 2006) used Poisson regression, (Ver Hoef and Frost, 2003) used an 

overdispersed Poisson regression, and (Boveng et al., 2003) used negative binomial 

regression. 

Because overdispersion is so common, several models have been developed 

for these data, including the negative binomial, quasi-Poisson (Wedderburn, 1974), 

generalized Poisson (Consul, 1989) and zero-inflated (Lambert, 1995) models. 

Relationships among some of the distributions can be found in (Joe and Zhu, 2005) 

and (Lord et al.,2005). Despite these developments, the quasi-Poisson and negative 

binomial models are used most often, largely because they are widely available in 

software and they generalize easily to the regression case. 

 

4. Methods: 

    

In this Section, brief theoretical review of log-linear models using Poisson and 

negative binomial distributions will be presented, and these methods will be utilized 

to generate the data for this study. 
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4.1. Log-linear model: 

 

Loglinear models (LLM) study the relationships between a discreet response variable 

(counts) and other explanatory variables. Often it referrers to analysis of multiway 

frequency tables, and it can be considered as an extension of the familiar chi-square 

test for independence in two-way contingency tables. 

 

Limitations and Assumptions: Since the use of LLM requires few assumptions about 

population distributions, they are remarkably free of limitations. They may be applied 

to almost any circumstance in which the variables are (or can be made) discrete. It can 

even be used to analyze continuous variables which fail to meet distributional 

assumptions (by collapsing the continuous variables into a few categories). 

Three basic assumptions should be considered when using LLM. 

1. Observations are independent from each other. In practice, this means that each 

observation comes from different subjects.  

2. All observations are identically distributed. This means that they are obtained in 

the same way.  

3. The number of observations is large. Since LLM make use of large sample 

approximations, they require large samples. The LLM algorithm begins by taking 

the natural logarithm of each of the cell frequencies, so empty cells (those with 

frequencies of zero) are not allowed. LLM appear to be less restrictive than 

traditional chi-square contingency tests, so rules that are used for those tests may 

be used for LLM analysis as well. 

 

Fundamental Approach: LLM analysis requires two steps. It is easy to become lost 

in details of each of these steps, but it is important to keep in mind the overall purpose 

of each task, 

1. Selecting an appropriate model. The first step is to find an appropriate model of 

the data. Several techniques may be used to find an appropriate LLM. One of the 

most popular is the step-down technique in which complex terms are removed 

until all terms remaining are significant. 

2. Interpreting the selected model. Once a model is selected, it must be interpreted. This is, 

the step in which you determine what your data are telling you. 

 

The Notation of Loglinear Models: Consider a two-way table in which the row-variable A 

has categories (levels) ( i=1,...,I )and the column-variable B has categories ( j=1,...,J). 

 A multiplicative model that reproduces the cell frequencies( fij ) exactly is 
 

             

Where[ mij = E(fij )] is the expected frequency of the( i
th

 )row and the ( j
th

 ) column. 

When the( mij ) are estimated using maximum likelihood, the results are denoted( mij). 

Also note that: 

   ∑       
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One aspect of the table that is of interest is whether A and B are independent. 

This is often tested using the familiar chi-square test. independence would be 

established if all   (    ) were equal to one. 

Because of its multiplicative form, the above formula is difficult to work with. 

However, if we take the logarithm of both sides, we can rewrite it as 
 

  (   )      
    

     
  

 
 

The (    ) are called effects. The superscript indicates the variable(s) and the 

subscripts refer to the individual categories of those variables. The order of an effect 

is equal to the number of variables in the superscript. 

Because this formulation is additive, it is called a loglinear model. Because of the 

logarithms, this model has the added constraint that none of the( mij ) are zero. 

Notice that the total number of     in this model is[ 1+I+J+(I x J ) ]which is greater than the 

number of cell frequencies (which is I x J ). When the number of parameters is greater than or 

equal to the number of cells, we say the model is saturated. A saturated model reproduces the 

observed frequencies exactly. 

By testing whether certain of the (    ) are zero, you can test various 

interrelationships. For example, to test whether all of the frequencies are equal, you 

would test whether all first-order and second-order effects (the                   ) 

are zero. Testing whether the (      ) are zero would test whether variables A and B 

are independent (no interaction). 

Testing whether the (   ) were zero would test whether the probabilities of the 

categories of A are equal. As you can see, this model will let you answer many 

interesting questions about factors A and B. 

 

Goodness of Fit: When dealing with several competing models, the relative quality of 

each model must be considered. The quality of a model, as measured by its goodness 

of fit to the data, may be tested using either of two chi-square statistics: 

  

• The Pearson chi-square statistic 
 

    ∑
       ̂     

 ̂   
       

 

• The likelihood-ratio statistic 
 

    ∑       (
    

 ̂   
)        

 

Both of these statistics are distributed as a chi-square random variable when N 

is large and none of the ( ̂   ) are small. If a few of the ( ̂   ) are small, the chi-

square approximation is still fairly close. Both of these statistics have n-p degrees of 

freedom where (n) is the number of cells in the table and (p) is the number of 

parameters in the model on which the ( ̂   ) are based. 

You should understand exactly what these two chi-square statistics are testing. 

They test whether the terms in the saturated model that are not included in the current 

model are significantly different from zero. 
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A word of Caution: the difference between the two (G
2
) is distributed as a chi-square 

only when the more complete model fits the data adequately. That means that the (G
2
) 

of the larger model should be nonsignificant. Because of the additively property of 

(G
2
), it is very popular in LLM. 

Again, this additively property does not hold for the Pearson chi-square 

statistic. Why do we even compute this value? Why not just use the likelihood ratio 

statistic?  

First, some studies indicate that the Pearson goodness of fit test may be more 

accurate. Second, since both of these are asymptotic tests, you can be more 

comfortable with small sample results when both tests lead to the same conclusion. 

 

Model Selection Techniques: Since your first task in the analysis is to find a well-

fitting model with as few terms as possible, you must adopt some method to limit the 

number of models you consider. The program provides several possible model 

selection methods. The final model will result from applying several of these 

techniques to your data. 
 
 

4.2. The Poisson Model:  

    

Poisson regression is similar to regular multiple regressions models except that the 

dependent (Y) variable is an observed count that follows the Poisson distribution. 

Thus, the possible values of Y are the nonnegative integers: 0, 1, 2, 3, and so on. It is 

assumed that large counts are rare. Hence, Poisson regression is similar to logistic 

regression, which also has a discrete response variable. However, the response is not 

limited to specific values as it is in logistic regression (y=0 or 1).  

Most books on regression analysis briefly discuss Poisson regression, such as 

(Cameron and Trivedi, 1998).  

 

The Poisson distribution: The Poisson distribution can be written, 

      |   
     

  
               

 

Notice that the Poisson distribution is specified with a single parameter   . 

This is the mean incidence rate of a rare event per unit of exposure. Exposure may be 

time, space, distance, area, volume, or population size. Because exposure is often a 

period of time, we use the symbol (t) to represent the exposure. When no exposure 

value is given, it is assumed to be one. 

The parameter     may be interpreted as the risk of a new occurrence of the event 

during a specified exposure period, (t). The probability of ( y) events is then given by 
 

      |     
       

  
               

 

The Poisson distribution has the property that its mean and variance are equal. 
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The Poisson Regression Model: In Poisson regression, we suppose that the Poisson 

incidence rate     is determined by a set of (k) explanatory variables (the X‟s). The 

expression relating these quantities is 
 

                           
 

Note that often [    ], and (  ) is called the intercept. The regression coefficients 

[          ] are unknown parameters that are estimated from a set of data. Their 

estimates are labeled [          ] Using this notation, the fundamental Poisson 

regression model for an observation (t) is written as 
 

      |       
            

 

   
  

Where 
 

         
    

 

                                      
 
 

That is, for a given set of values of the explanatory variables, the outcome 

follows the Poisson distribution. 

 

Solution by Maximum Likelihood Estimation: The regression coefficients are 

estimated using the method of maximum likelihood. The logarithm of the likelihood 

function is, 

            ∑            
     ∑       

    
    ∑        

 
   

 
     

 

Note that some statistical packages ignore the last term since it does not 

involve the regression parameters. This will make their calculated log-likelihoods 

different from ours. 

The likelihood equations may be formed by taking the derivatives with respect 

to each regression coefficient and setting the result equal to zero. Doing this leads to a 

set of nonlinear equations that admits no closed-form solution. Thus, an iterative 

algorithm must be used to find the set of regression coefficients that maximum the 

loglikelihood. Using the method of iteratively reweighted least squares, a solution 

may be found in five or six iterations. 

  

Distribution of the MLE’s: Applying the usual maximum likelihood theory, the 

asymptotic distribution of the maximum likelihood estimates (MLE‟s) is multivariate 

normal. That is, 

 ̂      ̂  ̂  , where    ̂   ∑       
  

        

Remember that in the Poisson model the mean and the variance are equal. In 

practice, the data almost always reject this restriction. Usually, the variance is greater 

than the mean and this situation called overdispersion. The increase in variance is 

represented in the model by a constant multiple of the variance-covariance matrix. 

That is, we use, 

  ̂  ∅ ∑       
  

       , where (φ) is estimated using 



 
 

Benghazi Modern University 
info.jmbush@bmu.edu.ly                               Dr.salahshalufi@bmu.edu.ly

        Mobile +218945429096 

14 

 ∅̂  
 

   
∑

     ̂  
 

 ̂ 

 
     

Goodness of Fit Tests: Overall performance of the model is measured by two chi-

square tests, 

   ∑
     ̂  

 

 ̂ 

 
     , and the deviance, or   statistic, 

   ∑ ,    (
  

 ̂ 
)       ̂  -

 
     

Both of these statistics are approximately chi-square distributed with n - k 

degrees of freedom. When a test is rejected, there is a significant lack of fit. When a 

test is not rejected, there is no evidence of lack of fit. 

The Pearson statistic is only chi-square distributed when you are analyzing 

grouped data, so if you are not using a frequency variable, you should not use the 

Pearson statistic as a goodness of fit test. The Pearson statistic may be used as a test of 

overdispersion. 

 

Deviance: The deviance is twice the difference between the maximum achievable 

log-likelihood and the log-likelihood of the fitted model. In multiple regression 

models and under the assumption of normality, the deviance is the residual sum of 

squares. In the case of Poisson regression, the deviance is a generalization of the sum 

of squares and it is as same as the Pearson chi square and    tests. The formula for the 

deviance is 

     ̂   {       ̂} 

 
 

4.3. Negative binomial model: 

The Negative Binomial Distribution: The Poisson distribution may be generalized by 

including a gamma noise variable which has a mean of (1) and a scale parameter of 

(ν). The Poisson-gamma mixture (negative binomial) distribution that results is 

        |      
         

             
 (

   

      
)
   

 
  

      
     

Where  

              
 

 
  

The parameter (μ) is the mean incidence rate of (y) per unit of exposure. 

Exposure may be time, space, distance, area, volume, or population size. Because 

exposure is often a period of time we use the symbol (ti) to represent the exposure for 

a particular observation, and when no exposure given it is assumed to be one. 

The parameter (μ) may be interpreted as the risk of a new occurrence of the event 

during a specified exposure period, (t). 

The results below make use of the following relationship derived from the 

definition of the gamma function 

  (
 (      )

 (   )
)  ∑           
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The Negative Binomial Regression Model: In negative binomial regression, the mean 

of (y) is determined by the exposure time (t) and a set of (k) regressor variables(the 

x’s). The expression relating these quantities is 

                                      

Often  1 ≡ 1, in which case (β1) is called the intercept. The regression coefficients (β1, 

β2, …, βk) are unknown parameters that are estimated from a set of data. Their 

estimates are symbolized as (b1, b2, …, bk). 

Using this notation, the fundamental negative binomial regression model for an 

observation (i) is written as 

        |      
         

             
 (

 

     
)
   

 
   

     
     

 

Solution by Maximum Likelihood Estimation: The regression coefficients are 

estimated using the method of maximum likelihood. (Cameron 2013, page 81) gives 

the logarithm of the likelihood function as 

  ∑ {                                                   
   

                             }  

Rearranging gives 

  ∑ , ∑            
    
                                   

   

                 -  

The first derivatives of ℒ were given by (Cameron, 2013) and (Lawless, 1987) as 

  

   
 ∑

          

     
                          

     

 
  

  
 ∑ {   (          ∑

 

        
    
    

     

        
- 

     

 

    

      
 ∑

               

         
                            

     

 

    

     
 ∑

            

        
                            

     

 

    

    ∑ {∑ (
 

    
)
 

                 
    
   

     

     
 

(      )  
 

        
}  

     

 

Equating the gradients to zero gives the following set of likelihood equations 

∑
          

     
                              

     
 

∑ ,               ∑
 

         
    
   

       

        
-     

     

Distribution of the MLE’s: (Cameron, 2013) gives the asymptotic distribution of the 

maximum likelihood estimates as multivariate normal as follows, 

[  ̂
 ̂
]   [

 
 
|

   ̂      ̂  ̂ 

     ̂  ̂    ̂ 
]  
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Where 

 ( ̂)  *∑
  

     
    

  
   +

  

  

   ̂  ∑ {              ∑
 

     
 

    
   

 
 

  

         
}
  

 
     

   ( ̂  ̂)     

 

Deviance: The deviance is twice the difference between the maximum achievable 

log-likelihood and the log-likelihood of the fitted model. In multiple regression 

models under the assumption of normality, the deviance is the residual sum of 

squares. In the case of negative binomial regression, the deviance is a generalization 

of the sum of squares. The maximum possible log likelihood is computed by replacing 

(μi) with (yi) in the likelihood formula. Thus, we have 

                 

      ∑ {     
  

  
             

     

     

 
} 

     

 

 

4.4. Procedures: 

 

Our data in this work are generated using (SAS) program, and they represent count 

observations of two different discrete distributions. SAS Monte Carlo simulation will 

be used over large number of replications (10,000). In each replication the program 

will generate a contingency tables of (2x2), (3x3) and (4x4) counts. The counts will 

be randomly generated such that the rows and the columns will be independent. The 

(10000) replications will be applied on some selected distributions, counts of Poisson 

distribution with specified average and counts of discrete uniform distribution with 

specified average. Poisson distribution will represent the regular case and the uniform 

distribution will represent the overdispersion case (light tailed distribution). The 

process will be replicated on some selected count averages of both distributions 

(Count averages: 5, 50, 100, 200 and 400). 

In each replication, the program will fit a log-linear model such that the rows 

and the columns are independent. The empirical p-values (type I error) of the model 

fit‟s test (from each replication) will be collected and changed to indicator variable (0) 

or (1). The program will record the value (1) in case of rejecting the null hypothesis 

(the model is fit) and (0) in case of acceptance. These values will be collected in a 

data set during (10000) replications stage. Finally, the proportion of rejection will be 

calculated over all (10000) replications. The calculated proportion will represent the 

probability of type one error since our generated counts are random in each 

replication. This process will be repeated for all distribution cases and count average 

cases. 

We will apply the log-linear model using both Poisson distribution and the 

negative binomial distribution on the generated counts from Poisson and Uniform 

distribution. The performance of each model will be evaluated according to the 

probability of type I error for all simulation stages. 
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5. Results: 

   

The following tables shows the probabilities of type one error for each model over all 

cases: 

 

Empirical Type-I error for each case over 10000 replications  

(2x2 Contingency Tables) 

Count 

average 

Counts  generated from Poisson 

distribution (Regular case) 

Counts  generated from uniform 

distribution (Overdispersion case) 

Poisson Model Neg.bin Model Poisson Model Neg.bin Model 

5 0.0600 0.0259 0.0270 0.0120 

50 0.0510 0.0530 0.5580 0.3110 

100 0.0520 0.0490 0.6920 0.4787 

200 0.0480 0.0390 0.7870 0.3790 

400 0.0550 0.0460 0.8531 0.4490 

 

In case of counts generated from Poisson distribution the Poisson model gave 

probabilities of type one error close to 0.05 for most count averages. as well in case 

negative binomial model gave probabilities of type one error close to to 0.05. except 

one case (count average = 5) the probability of type one error equal to 0.02 

In case of counts generated from light tailed distribution (Uniform), turns out that 

both models gave large probabilities of type one error for all count averages. But 

whenever the sample increased then the negative binomial model has less probability 

of type one error compare to Poisson model.  
 

Empirical Type-I error for each case over 10000 replications  

(3x3 Contingency Tables) 

Count 

average 

Counts  generated from Poisson 

distribution (Regular case) 

Counts  generated from uniform 

distribution (Overdispersion case) 

Poisson Model Neg.bin Model Poisson Model Neg.bin Model 

5 0.0399 0.0180 0.0010 0.0002 

50 0.0487 0.0010 0.9290 0.1220 

100 0.0499 0.0550 0.9800 0.0780 

200 0.052 0.0302 0.9980 0.0430 

400 0.0469 0.0620 1.0000 0.0320 

 

In case of counts generated from Poisson distribution the Poisson model gave 

probabilities of type one error close to 0.05 for all count averages which is reasonable 

result. By comparing the results (Poisson model and negative binomial model),The 

negative binomial model gave small probability of  type one for small samples size 

(0.0181for count average = 5), (0.0010, for count average = 50), and( 0.0220 for 
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count average = 100) and it became close to the Poisson model results with increasing 

sample size. 

in case of counts generated from light tailed distribution (Uniform), the 

Poisson model gave larger probabilities of type one error in all cases, Increases by 

increasing sample size (large count average). And The negative binomial model gave 

large probability only in case of  sample (count average = 50), and It gave a small and 

satisfying probabilities with increase the sample size (large count averages). 
 

Probability of Type-I error for each case over 10000 replications  

(4x4 Contingency Tables) 

Count 

average 

Counts  generated from Poisson 

distribution (Regular case) 

Counts  generated from uniform 

distribution (Overdispersion case) 

Poisson Model Neg.bin Model Poisson Model Neg.bin Model 

5 0.0511 0.3610 0.6561 0.4923 

50 0.0466 0.2039 1.9990 0.0123 

100 0.0572 0.1513 1.0000 0.0042 

200 0.0497 0.0837 1.0000 0.0040 

400 0.0500 0.0348 1.0000 0.0036 
 

   In case of counts generated from Poisson distribution the Poisson model gave 

probabilities of type one error close to 0.05 for all count averages which is reasonable 

result. The negative binomial model gave large probability of type one for small 

sample size (0.361 for count average = 5) , (0.2039, for count average = 50) and 

(0.1513 for count average = 100) and it became smaller as the sample size increase.  

  In case of counts generated from light tailed distribution (Uniform), the Poisson 

model gave larger probabilities of type one error in all cases, especially when the 

sample size is large (large count average). The negative binomial model gave large 

probability only in case of small sample (count average = 5), and it gave smaller 

probabilities as well as the sample increased (large count averages). 

 

6. Summary and Conclusions:   

    

This paper introduced the Poisson and negative binomial models as appropriate 

techniques to describe two-Way Contingency Tables (or a count data) of a response 

variable. 

Through the above results, the study concluded that the Poisson model is 

severely affected by the existence of overdispersion problem, and gave large 

probability of type one error even if the count average is small. The negative binomial 

model is a good To reduce the problem of overdispersion in data of contingency 

tables, especially when the count average is large enough.  

So for an overdispersion data, the negative binomial model is better than the Poisson 

model. 
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