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Transmission and Reflection Coefficients of the Random
Electron Energy Profile With Respect to a Step Potential
Barrier

ABDULWAHHAB ALKUWAFI
(Physics Department. Faculty of Science. Omar Al-Mukhtar University. Libya)

Abstract.

An electron beam one-dimensional scattering problem has been treated in terms of
quantum mechanics perspective by the agency of FORTRAN code to simulate the
electron generator. One thousand different incident energies were examined within
the range of (0.5 — 1.0 keV’) to cross a step potential energy barrier of 0.5 keV. The
percentage of the electrons that more likely to transmit or reflect due to the existence
of the step-potential were investigated by the route of transmission and reflection
coefficients. Unblemished curves obtained to represent the relation between the
coefficients and the electron incident energies. The two coefficients are found, as it is
intuitively expected to complement each other; their sum is unity everywhere.

Key words: Scattering problem, Transmission coefficient, Reflection coefficient.
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Introduction.

In quantum mechanics realm, a particle (say an electron) penetrates a potential
barrier and end up in the other region, whereas, it is completely forbidden
according to classical mechanics point of view. The analogy of this statement in
macroscopic level is having a hill of height h and a ball of mass m ascends up the
hill with a kinetic energy KE . At the top all the kinetic energy will be transferred
to a potential energy. We do know, classically, if the kinetic energy is happened
to be less than the gravitational potential energy, it is absolutely impossible for
the object to be at the other side of the hill (Halliday, 2013). On the other hand, in
quantum mechanics the scenario is absolutely deferent; always there is some
probability that the particle will appear at the other side where the potential
barrier exist. In other words, even though the potential barrier that the moving
particle encounters is greater than the incident kinetic energy, the particle might
be detected at the other side. In the last twenty years a numerous number of
researches have been conducted as well as many applications of the electron
quantum transport in mesoscopic and nanoscopic systems emerged (Dyndyk,
2013). The electron hopping mechanism while transporting from the left to the
right lead through the central part has attracted a number of authors (Ryndyk,
2009), (Nazarov, 2009), (Ventra, 2008). This problem is well known in the
research area as quantum junction. As we shall see in the following, the main
formal situation to be discussed is the one dimensional electron transport
problem with respect to the quantum mechanics postulates. Precisely, a confined
particle to move only in one-dimension (in x-axis) with mass of m under the
influence of variable potential field V (x). The ultimate objective of this work is to
figure out the one-dimensional electron scattering problem with the aid of the
exquisite one-dimensional Schrodinger equation for booth bound and unbound
states. This work will precede to identify the transmission and reflection
coefficients (T and R respectively) of the incident electron facing a potential
barrier. Taking into account the particle total energy is E = KE +V we can
express the time independent Schrédinger equation as

0%¢
0x2

2 1
= - E-V)p .

Here we must treat two cases individually. When the particle in the allowed
region where the total energy is greater than the potential energy (E > V); in
this context it is obvious that the kinetic energy is positive and identified to be

h2k? 2)

KE=E-V =
2m
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In the above, k is the electron wave number. With this assumption one may
recast the differential Equation (1) and its general basic solution as?

9% 3
S = ke ®
P)~eti )

On the other hand, if the potential energy barrier is greater than the total
electron incident energy (E < V), the electron is said to be in the classical
forbidden region2. Under this condition, the differential Equation (1) and its
basic solution are

ik 5
5 = k()0 )
p()~ets (6)

The insight eye can readily recognize that if the particle is in the allowed
region, the solution is an oscillatory wave function (~e***). In contrast, the
solution is represented by a decaying wave (~e~*¥) or a growing wave (~e**¥) if
the particle happened to be in the classically forbidden region. The classical
turning point is distinctly detected at E = V that corresponding to d%¢/dx? =
dp/0x = 0; which means, the solution of our Schrodinger equation at the
classical turning point is a wave function ¢(x) with a constant slop.

Bound and unbound states of the electron.

In one-dimensional system, a normalizable wave function can exquisitely
represent the electron bound state (Veszprémi, 2012). Mathematically, it is
always true that a bound state 1 complies the condition

[1|2 = 0 for |x| = oo (for all values of t) (7)

The norm integral of the electron bound state over a broad interval gives a
specific finite value

f Oolt/)lzdx < o0 ®)

On the contrary, the norm integral of unbound state results a finite
number only over a narrow finite interval

21,2
Mk E-V>0

2m

! The incident electron kinetic energy

27,2 27,2
? The electron possess a negative kinetic energy: KE = E —V = — hz:z and hz—:l =V—-E>0
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ff|¢|2dX<00for|a—b| < 0 9)

It is time to reminiscence some basic information pertain to the one-
dimensional linear momentum operator (in x-axis)
~ 9] 10
P, = —ih— (10)
0x
If the momentum operator operates the electron wave function, the
general eigenvalue equation (A¢ = a¢) will expressed as
0 11
—ih—(p =P (11)
0x
Within this framework if we measure the x-component of the linear
momentum the most likely values that we might obtain are P,. In the event that
the electron is free and has no boundary condition, the solution of the previous
equation is seen to be
1Py 12
px)=Aeh (12)
In quantum mechanics it is customary to work with wavenumber in the
lieu of linear momentum and thus, the eigenfunction and the eigenvalues of one-
dimensional linear momentum operator are

Pr(x) = Ae™ (13)
Consequently, the eigenstates of the one dimensional momentum operator are

1 eikx (14)

— ikx
¢k(x) = Ae - Nt

These eigenstates are relevant to that of the unbound or free electron state3.
In actuality, a proper treatment of the electron scattering problem, demands
entire description of bound and unbound states. Predominantly, this sort of
problems customarily contain a bunch (or, beam) of particles, can be, electrons
or neutrons of equal energies or momenta, which is incident on a step potential
barrier. It is evident that the norm integral of the wave function over an infinite

domain ( f::llplz dx) does not converge for the free electron state, dealing with a
normalized wave function with respect to the particle density is preferred. In
one-dimensional problem, the incident particle density p can be defined as
p = dN/dx; it is simply the differential number of particles divided by the
differential length. It is essential that the wave function norm at any point x is

® The coefficient in equation (14) appears from the orthonormality condition of the electron
eigenstates.
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directly proportional to the existence of the electron there* (Feynman, 1965), we
might write

[|>dx = pdx = dN, (15)

Or simply the total number of electrons that exist in a finite interval is
(Liboff, 2003)

b
f pl2dx = N (16)

a
Current density and continuity equation.

In three-dimensional systems, the relationship between the incident electron
density p and its relevant current density J can perfectly described by continuity
equation

ap (17)

S TVI=0

The integration of the left-hand side over a closed volume gives

dp (18)

—dr+3€ V-Jdr=20
g, a0,

Taking into account the definition of the total number of electrons (N = gﬁV pdr),
we obtain5

ON ~ (19)
E+£]-ds_o

A quick insight to equations (17) and (19), tells the verification concept of
conservation of matter. For a bunch of electrons restricted to move in one-
dimension (x-direction), the reduced form of the current density vector is
written as J = ], X, whereas the continuity equation is

dp 0Jx
T 0

(20)

We have shortly in equation (15) associated the square norm of the
electron wave-function with the electron density. In order to establish a
mathematical expression that represents the current density in terms of the

4 At any point x, we are specific that |(|2dx « pdx. In this study, the proportionality constant
arbitrary has been taken to be unity.

5 Here, the Gauss's theorem (§V V-dr = §S ] - dS) has been utilized to simplify the integral.
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electron wave-function, we have to follow the same concept for the wave norm
and the electron density (Feynman, 1965), (Liboff, 2003). To do so, the perfect
way is to invest the one-dimensional-time-dependent Schrodinger equations in
the form of

-~

o _ _ L W _ 1L 21
at hHlp and at hHlp (21)

The one-dimensional Hamiltonian operator is defined as

a P? v h% 92 v (22)
—2—+ (X)——z—a—+ (x)

Taking into consideration that || =

density p, we may readily write

Y*, concurrently, it is the electron

oY oY op* (-l +ifl (23)
o Ve tvoa TV im Y)Y i

Substitution of the Hamiltonian from equation (22) yields

T 0%y RV (24)
at  2m v dx? v d0x?
Or simply

61/)1/}_{_ lh( Loy 0_1/)*)}_0 (25)

ot  oxl2m\” ox ox /1

If we correlate equation (20) with equation (25) with respect to the above
mentioned definitions, one may conclude that the one-dimensional current
density can be identified as

_ho 0 oy (26)
Ix—ﬁ(lﬂa ax>

One more thing we should emphasize here is the dimension of x-
component of the current density, which is obviously seen from equation (20) to
be particle/time.

Material and methods.

The electron one-dimensional scattering problem can be utterly treated on the
light of transmission and reflection concept. The particles (or electrons) that
have definite momenta are said to be in plane-wave states. The wave-functions
relevant to incident, reflected, and transmitted particles are assumed to be
known. As a consequence, the current densities of those beams are identified in
agreement with equation (2). Intuitively, the definition of the transmission (7T)
and reflection coefficient (R) will satisfy the following
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]ref

T = |%ran| and R = (27)

inc Jinc

The reader should be aware that, if we presuppose that the incidents
electrons all have the same definite linear momentum (P;,. = hk;) then, the
reflected electrons will have precisely the opposite value (Pref = —hkq). Apart
from the incident and reflected momenta, the transmitted momentum because of
the potential barrier (V(x)), will have a distinguishable momentum (P4, =
hk,). In this study, we assume that the potential energies of the electrons out of
the central region are constants to some definite values. In other words, a one
dimensional wire-like structure centered horizontally on x-axis and extended
from -1 to 1 mm has been chosen as a path of electron beam. The potential
energy is zero for all values of x being within the range of —1 <x <0, in
contrast, it is 0.5 keV for 0 < x < 1. A FORTRAN code has been written to
produce 1000 energies that varies from 0.5 to 1.0 keV with nine digits accuracy
after the decimal point. Each energy value commensurate with the condition
that; for —1 < x < 0, the incident electron energy is greater than the potential
energy. The written code has an ability to calculate the corresponding electron
incident and transmitted velocities (Vi & Viran), Wavelengths (A0 & Aeran),
momenta (P, & Piran), Wwavenumbers (k; & k,), and coefficients (T & R). The
wave-functions of the incoming and outgoing electron beam might be
represented as

. h2k2 (28)
Yine = A eilkrx wlt): hwy = Eipe = W 212
Cene h2i? 29)
lpref =Be i(kyx w1t)’ fl(t)l =Eper = Einc = W
. h%k2 10
Yirgn =C el(kzx—wzt), hwy = Etrgn = —2 +V = Ejpe = hw, (10)

2m

In equation (29), we have robustly stated the fact that the electron beam
total energy is conserved and the angular frequency of the incident and reflected
electron must be equal. Employing the current density definition (equation 26)
with the above three general solutions of the Schrédinger equations we end up
with

h 11

Jinc = akllAlz (11)
h 12

Jtran = akzlclz ( )
(13)

h
]ref = EkllBlz
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[t is precious to mention here that the last three equations are the particle
currents conforming to the quantum mechanics point of view®. Inserting the
recently obtained values of the particles currents into equation (27), we obtain
the coefficients that we are after as

Ci’k 14
T=’— K2 (14)

Al k,

B|? 35
R=’— (35)

A

It is recognized that in the event that the incident wavenumber and the
transmitted one are equal (k; = k,) the simplest form of the transmission
coefficient will obtained. In this work we put into form the way that quantum
mechanics work of treating the simple step problem. The total energy of the
incident electrons have been altered automatically 1000 times. Our aim is to
elucidate which energies are more likely to transmit to the other region of the
entire energy profile. As it depicted in Figure 1; all the incident energy values are
greater than the step potential energy. Further, it is clear from the figure that
there are two distinct regions, to demonstrate; in the first region V(x) = 0 for
x < 0, while the second region characterized by constant potential for x > 0.

T T

| V) -

14 |- I Total energy (E) ---=---
|
|

12 | -
|
|

0.8 |-

Energy (keV)

0.6 -

04 |-

0 & 1
-1 -0.5 O 0.5 1

Particle position (mm)

|
Figure 1 The step potential barrier with theymaximum incident electron energy.
|
In the first region (region a), the toﬁlal energy is purely kinetic due to the

omission of the potential energy, to obtain the wave-function (¢,) we have to
solve the time-independent Schrodinger equation of this region

® The interrelationship between classical and quantum mechanics is built by means of p = |3,

J]=pv,andv = zh—:; with v being the electron speed.
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h2 92 (36)

“omoxz 0¥
By taking E = h?k?/2m we end up with
% (37)
oz~ kY

In region b, the scenario is quite different where the kinetic energy is
observed to be reduced by the amount of potential energy there, and time-
independent Schrodinger equation of this region is formulated as

h? 0% (38)
————=(E-V
2m dx? ( )¢

If we express the kinetic energy as; E — V = KE = h?k% /2m then, we may
write equation (38) in the form of

0%¢

axz = ko

(39)

The abecedarian or elementary solutions of the differential equations (37
and 39) of the electrons in regions a and b in their most generic forms
respectively are

P, = Aet1¥ 4 Be~ikix (40)
P, = CetkeX 4 pe=ika* (41)

It is conspicuous that the solutions have no time-dependent factors, to put
into work, we have to include these factors which is visibly seen in Table 1. The
solutions that comprise the time factors can readily interpreted as we mentioned
in the last column of Table 1.

Table 1 The terms of the wave-functions in regions befor and after the potential barrier with
their interpretation.

Region Wave-function term Interpretation
a Aetkrxgioit — poilkix—wit) Incident wave traveling to the right
b CelkaXg~iwzt — Collkax—w2) | Transmitted wave traveling to the
right
a Be~ikixg-iwit — pe-ilkix+wit) | Reflected wave traveling to the left
b De~tkexg—iwat — po-—ilkzx+wat) | Wave traveling to the left (originate
from positive infinity)

Our authentic problem demands no electrons traveling from positive
infinity to the left, as a consequence, the factor D is simply zero and one may
recast the solutions as
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P, = Aetf1X 4 Be~th1x (42)
Py = Cetke? (43)

Because the solutions and their first spatial derivatives being continuous
atx = 0; in fact, this condition must be always true to guarantee that the
Schrodinger equation has a single solution. Mathematically, this condition is
wording as

Ya(0) =1, (0) (44)
0 _ i (45)
—1a(0) = 1, (0)
It turns out that
(46)

k;
A+B=C&A—-B=—C
k1
Solving the above for the sake of the aimed unknown factors, we attain the
following

C__ 2 B 1okl (47)
A 1+ky/ky A 1+ky/k,
Lastly, feeding the recently obtained equation into equations (34) and

(35) we reach the transmission and reflection coefficients that we have eyes for,
to be as

? (48)

4ky/le _ ‘1 — ko/ky
[1 + (kZ/kl)]z 1+ kZ/kl

Results and discussion.

The incident electron energy values and their associated transmitted energies
that generated from the written code were plotted in Figure 2. The incident
energy profile is perfectly cover a rectangular area in region a above the step
potential value within the limited borders. As it is mentioned above, those
energies are mainly kinetic. By virtue of the constant value of potential in region
b, all the values are seen to be logically reduced by V(x) . It is remarkable to
notice here that the elementary condition (E;,. > V(x)) in region a is attained. In
the above, we have met that the transmission and reflection coefficients are just
functions of the angular wavenumbers only. All the needful physical quantities
that lead to the angular wavenumber of the incident and transmitted electron
wave-functions have been calculated automatically with aid of the written code.
Of course, the performance and reliability of the code has been checked in every
step by handwriting calculations. From the contour depiction (Figure 3), it is
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manifested that the step potential has strictly divided the graph into two
distinguished regions. The first region represents the wave-functions of fairly
high wavenumbers (the area between 0.11 x 10! (1/m) <k <0.14 X
101 (1/m)). On the other hand, wave-functions of low wave-numbers appear in
the area of 0.06 x 10! (1/m) < k < 0.09 x 10! (1/m) in region b after the
potential barrier. Broadly speaking, in Figure 3, the bright areas are the places
where the coming electrons have higher energies and higher wavenumbers. In
contrast the dark regions representing low energies and low wave numbers.

After having the angular wave-numbers being calculated via the written
code, it is time to demonstrate the relationship between the incident electron
energy and its transmission and reflection coefficients by means of Figure 5. Two
flawless curves were appeared exhibiting the tendency of T and R with no
abrupt drop or raise. Furthermore, as the incident energy increase, the value of
the transmission coefficient also increase, whereas its counterpart behaves
adversely. It is recognized also that in small domain (0.5keV < E;,. <
0.5125 keV) the transmission coefficient drastically ascend. In contrast, within
the same energy range the reflection coefficient abruptly drop. At nearly E;,. =
0.5125 keV, the transmission and reflection coefficients are nearly equal, which
means that; a beam of electrons, all of energy amount to 0.5125 keV, 50 percent
of them will transmit passing the potential barrier and the rest of them will
reflect back. With incident electron energy being increased, the transmission
(reflection) coefficient will gradually increase (decrease) to be near from one
(zero) but not one (zero).

09
08
0.7
0.6 |
05

0.4

Particle energy (kev)

0.3

Particle position (imm)

Figure 2: The examined energy profile of 1000 random values with its corresponding
transmission profile as a function of x.
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Conclusion.

The programing language is considered a powerful tool in simulating this sort of
problems exquisitely. Apart from any other perspectives, the energy profile
domain in this study has been chosen only for curiosity; in subsequent works we
may study a broad range of electron energies or different values of step
potential. Realistically, this article just pave the way to go deeply in one-
dimensional electron hopping mechanism. Each pair of electron incident energy
and its associated angular wavenumber (Ej,., k1) is perfectly reflected under the
influence of the step potential by reducing its values with specific amount to be
(Etran, k2)- To recast, it is always true that ({Ejnc, k1} > {Etran k2})-

We have seen that modeling and solving the Schrodinger equations in
their most general forms for incident, reflected, and transmitted beams with the
aid of quantum mechanics postulates, leads to a fabulous plain applicable
formulas. For instance, both transmission and reflection coefficients are
functions of incident and transmitted angular wavenumbers only. It is worthy to
mention here that there is a robust proportionality between that coefficients
(transmission and reflection) and the incidents electron energy. To repeat, the
electron beam energy is play a substantial role to overcome the step potential
barrier. In the event that the incident beam of high kinetic energy (E;,. = 1 keV)
happen to cross the barrier, one may fairly say that more than 95% of the
electrons will manage to transmit. On the other hand, only less than 5% will
reflect.

0.9

E (keV)
(=]

{ 0.09
0.08

0.07

0.06
-1 -0.8 -0.6 -0.4 -0.2 () 0.2 0.4 0.6 0.8 1

X (mm)

Figure 3 The studied energy profile against the particle position with their correlated wave-
umbers been the contour lines?.

7 The contour lines are simply the angular wave numbers of dimension of m~! multiplying by
1011,
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